How physically aware interconnect IP bolsters SoC design

Article By : Majeed Ahmad

A physically-aware interconnect IP facilitates optimal network-on-chip (NoC) topology at front-end and speeds up timing closure at the back-end.

The network-on-chip (NoC) technology, which connects IP blocks in highly complex system-on-chip (SoC) designs, has ascended to the next logical level by becoming physically aware. According to Andy Nightingale, VP of product marketing at Arteristhat accelerates the exploration of the needed space to achieve an optimal NoC topology at the front-end and speeds up timing closure at the back-end.

Arteris has unveiled its next-generation interconnect IPFlexNoC 5, which it calls the first physically aware NoC technologyIt’s aimed to allow SoC architecture teams, logic designers, and integrators to incorporate physical constraint management and achieve faster physical convergence over manual refinements with fewer iterations from the layout team.

Figure 1 A large 7-nm SoC may require 6,000+ pipeline registers and performing the insertion of pipeline registers by hand invariably results in overdesign. Source: Arteris

Currently, IC designers use manual workflows that typically include numerous iterations of pipeline insertions, effort-intensive creation of constraints for physical placement of units, and lengthy NoC placement plus route iterations to converge on the power, performance, and area (PPA) targets for SoC designs. Here, a physically aware interconnect IP shortens the duration of various manual steps while eliminating the iterations.

Graham Curren, CEO of Sondrel, acknowledges that physical constraints have always been an important issue and are even more important below 16-nm geometries. Sondrel, a supplier of IC design services, has employed FlexNoC 5 in its custom SoC design project, and according to Curren, that has enabled RTL teams to verify that architectures meet physical constraints and provide a better starting point for place and route.

Charles Janac, president and CEO of Arteris, added that without physical awareness, IC developers might end up with SoC architectures that are difficult or even impossible to place and route. “That may result in multiple turns, overall project delay risks, and additional project costs, particularly for geometries of 16 nm and below.”

Figure 2 FlexNoC 5 interconnect IP claims to perform 5X faster physical convergence over manual refinements with fewer iterations. Source: Arteris

Arteris claims that FlexNoC 5 facilitates up to 5X faster physical convergence of the back-end physical design time and effort. That prepares the physically optimized NoC IP for physical synthesis and place-and-route implementations. FlexNoC 5 also expands support for Arm AMBA 5 protocols and IEEE 1685 IP-XACT, including a connectivity flow with Arteris Magillem for NoC integration with other SoC IP blocks.

 

This article was originally published on EDN.

Majeed Ahmad, Editor in Chief of EDN and Planet Analog, has covered electronics design industry for longer than two decades. During this period, he has worked in various editorial positions, including assignments for EE Times Asia and Electronic Products. He holds a Masters’ degree in telecommunication engineering from Eindhoven University of Technology.

 

Virtual Event - PowerUP Asia 2024 is coming (May 21-23, 2024)

Power Semiconductor Innovations Toward Green Goals, Decarbonization and Sustainability

Day 1: GaN and SiC Semiconductors

Day 2: Power Semiconductors in Low- and High-Power Applications

Day 3: Power Semiconductor Packaging Technologies and Renewable Energy

Register to watch 30+ conference speeches and visit booths, download technical whitepapers.

Leave a comment