Nanoengineers have discovered that adding small amounts of bismuth oxide to zinc batteries allows the batteries to continue to work and to be recharged.
« Previously: Printed, flexible battery powers wearable apps
The key ingredient that makes the batteries rechargeable is a molecule called bismuth oxide which, when mixed into the batteries’ zinc electrodes, prolongs the life of devices and allows them to recharge. Adding bismuth oxide to zinc batteries is standard practice in industry to improve performance, but until recently, there hasn’t been a thorough scientific explanation for why.
Last year, UC San Diego nanoengineers led by Professor Y. Shirley Meng published a detailed molecular study addressing this question. When zinc batteries discharge, their electrodes react with the liquid electrolyte inside the battery, producing zinc salts that dissolve into a solution. This eventually short-circuits the battery. Adding bismuth oxide keeps the electrode from losing zinc to the electrolyte. This ensures that the batteries continue to work and can be recharged.
The work shows that it is possible to use small amounts of additives, such as bismuth oxide, to change the properties of materials.
"Understanding the scientific mechanism to do this will allow us to turn non-rechargeable batteries into rechargeable batteries—not just zinc batteries but also for other electro-chemistries, such as Lithium-oxygen,” said Meng, who directs the Sustainable Power and Energy Centre at the UC San Diego Jacobs School of Engineering.
Rajan Kumar, a co-first author of the paper, is a nanoengineering Ph.D. student at the Jacobs School of Engineering. He and nanoengineering professor Wang are leading a team focused on commercialising aspects of this work. The team is one of five to be selected to join a new technology accelerator at UC San Diego. The technology accelerator is run by the UC San Diego Institute for the Global Entrepreneur, which is a collaboration between the Jacobs School of Engineering and Rady School of Management.
Figure 2: Rajan Kumar is the co-first author of the Advanced Energy Materials paper and leads the team to commercialise the technology.
Kumar is excited at the prospect of taking advantage of all that the IGE Technology Accelerator has to offer.
"For us, it’s strategically perfect," said Kumar, referring to the $50,000 funding for prototype improvements, the focus on prototype testing with a strategic partner, and the entrepreneurship mentoring.
Kumar is confident in the team’s innovations, which includes the ability to replace coin batteries with thin, stretchable batteries. Making the right strategic moves now is critical for commercialisation success. "It’s now about making sure our energies are focused in the right direction," said Kumar.
In addition to the IGE Technology Accelerator, the team was also recently selected to participate in the NSF Innovation-Corps (I-Corps) program at UC San Diego, also administered by the Institute for the Global Entrepreneur. One of the key tenets of the I-Corps program is helping startup teams validate their target markets and business models early in the commercialization process. Through NSF I-Corps, for example, Kumar has already started interviewing potential customers, which has helped the team better focus their commercialisation strategy.
Through these programs, Kumar is focused on leading the team through a series of milestones in order to best position their innovations to refine “both what to build and who to build it for,” he said.